Acta Cryst. (1996). C52, 2807-2809

Two Nitro- α -methoxy-*trans*-chalcones

Michael Bolte,^{*a*} Günther Schütz^{*b*} and Hans Joachim Bader^{*b*}

^aInstitut für Organische Chemie der Universität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Didaktik der Chemie der Universität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany. E-mail: bolte@chemie.uni-frankfurt.de

(Received 15 April 1996; accepted 12 June 1996)

Abstract

The crystal structures of 2-methoxy-3-(3-nitrophenyl)-1-phenylprop-2-en-1-one, $C_{16}H_{13}NO_4$, (Ia), and 2-methoxy-3-(2-nitrophenyl)-1-phenylprop-2-en-1-one, $C_{16}H_{13}NO_4$, (Ib), are reported. These two molecules are constitutional isomers differing in the position of the nitro group attached to one of the phenyl rings. The central double bond has a *trans* configuration in both structures. The conformations of the two molecules are very similar, except that in compound (Ia), the phenyl ring with the nitro substituent is nearly coplanar with the nitro group and the double bond, while in (Ib), there are significant deviations from coplanarity of these moleties.

Comment

The title compounds display different reactivities towards arylpyridines in the ring-closure reaction according to the method of Kröhnke & Zecher (1962), with α -methoxychalcones as educts (Teuber, Schütz & Bader, 1977); while compound (Ia) is reactive, compound (Ib) is rather inert. Constitutional isomeric α -methoxychalcones incorporating other functional groups (except methyl) display the same effect.

The present X-ray structure analyses constitute part of our investigation into the reasons for this behaviour. The hypothesis that the configuration of the double bond might be responsible for the different reactivities can now be excluded, since the double bonds in both molecules have a trans configuration. While the double bond in compound (Ia) (Fig. 1) is coplanar with the p-nitrophenyl ring $[C2-C1-C11-C12 \ 0.4 \ (4)^{\circ}]$, a torsion angle of $18.6(3)^{\circ}$ is found in compound (Ib) (Fig. 2). In (Ia), the nitro group is coplanar with the adjacent phenyl ring [O14' - N14 - C14 - C13 - 4.3(4)]and O14''—N14—C14—C15 –5.1 (4)°], but in compound (Ib), dihedral angles of 25.5(2) and $26.1(3)^{\circ}$ are found for O13'-N13-C13-C14 and O13"-N13-C13-C12, respectively. This different conformational behaviour might be due to crystal-packing effects seeking to minimize repulsive interactions between the nitro groups of different molecules; a rather short intermolecular distance is found in (Ib) $[O13' \cdots O13'(2-x,$ -y, -z) 2.803 (3) Å], while in (Ia), the shortest intermolecular contacts of both nitro O atoms to non-H atoms are $O14' \cdots C34(x-1, y, z) = 3.454(5)$ and

Fig. 2. Perspective view of compound (Ib) with the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

O14"...C14($-x, -\frac{1}{2} + y, \frac{3}{2} - z$) 3.421 (5) Å. For the carbonyl O atoms, short intermolecular contacts can be found in both structures; $O31 \cdots H36(1-x, -y, 1-z)$ 2.681 (4) Å in (Ia), and O31···H15(x, y + 1, z) 2.711 (2) and O31...H16(x, y + 1, z) 2.961 (2) Å in (Ib). Due to the different substitution pattern of the nitrophenyl ring, a short $O \cdots O$ intramolecular interaction arises in (Ib) $[O13'' \cdots O21 4.457 (2) Å]$, while a comparable distance is missing in (Ia).

A least-squares fit (Fig. 3) of atoms C1-C3, O21, C22, O31 and C31-C36 (r.m.s. deviation 0.067 Å) shows the structural similarities of both molecules and the different conformations of the nitrophenyl rings.

Fig. 3. A least-squares fit of the two title compounds. Fitted atoms are labelled.

Experimental

The title compounds (Ia) and (Ib) were prepared by the acyloin condensation of 3-nitrobenzaldehyde and 2-nitrobenzaldehyde, respectively, and ω -methoxyacetophenone with sodium methylate in methanol at room temperature (Teuber, Schütz & Bader, 1977; Malkin & Robinson, 1925). Single crystals were obtained from methanol solution in both cases.

Compound (Ia)

Crystal data

 $C_{16}H_{13}NO_{4}$ $M_r = 283.27$ Orthorhombic Pbca a = 14.140(5) Å b = 8.028(2) Å $c = 25.133 (4) \text{ \AA}$ $V = 2853.0(13) \text{ Å}^3$ Z = 8 $D_x = 1.319 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius CAD-4 fourcircle diffractometer

 ω scans $h = -15 \rightarrow 8$ $k = 0 \rightarrow 8$ Absorption correction: none $l = 0 \rightarrow 28$ 3 standard reflections 3517 measured reflections 2115 independent reflections frequency: 92 min 1513 observed reflections intensity decay: 0.80% $[I > 2\sigma(I)]$

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.256 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.0575	$\Delta \rho_{\rm min} = -0.228 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1760$	Extinction correction:
S = 1.063	SHELXL96
2115 reflections	Extinction coefficient:
191 parameters	0.0087 (8)
H atoms: see below	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0946P)^2]$	from International Tables
+ 0.3819 <i>P</i>]	for Crystallography (1992
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} < 0.001$	6.1.1.4)

Table	1.	Fract	tional	atomic	coordinate	s and	l equiv	alent
i	sot	ropic (displa	cement	parameters	$(Å^2)$	for (Ia)	

$$U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
C1	0.31538 (17)	0.2612 (3)	0.61596(11)	0.0644 (7)
C2	0.34203 (17)	0.3262 (3)	0.56947 (11)	0.0655 (7)
C3	0.43554 (18)	0.2764 (3)	0.54627 (12)	0.0716 (8)
C11	0.22293 (16)	0.2594 (3)	0.64149 (10)	0.0610 (7)
C12	0.14159 (18)	0.3290(3)	0.62005 (12)	0.0746 (8)
C13	0.05616 (18)	0.3216(3)	0.64645 (13)	0.0787 (8)
C14	0.05257 (16)	0.2414 (3)	0.69501 (12)	0.0704 (8)
N14	-0.03777(17)	0.2319 (4)	0.72313 (13)	0.0931 (8)
014'	-0.10574 (17)	0.3031 (4)	0.70451 (12)	0.1278 (10)
014''	-0.04179(17)	0.1470 (5)	0.76369 (12)	0.1369(11)
C15	0.13039 (19)	0.1671 (4)	0.71681 (12)	0.0784 (8)
C16	0.21538 (18)	0.1783 (3)	0.69023 (11)	0.0714 (7)
O21	0.28065 (12)	0.4115 (2)	0.53837 (8)	0.0818 (6)
C22	0.3191 (2)	0.5372 (4)	0.50407 (12)	0.0884 (9)
031	0.44021 (15)	0.2432 (3)	0.49897 (10)	0.0992 (8)
C31	0.51935 (17)	0.2604 (3)	0.58123 (11)	0.0683 (7)
C32	0.5357 (2)	0.3673 (4)	0.62295 (12)	0.0792 (8)
C33	0.6169 (2)	0.3566 (4)	0.65237 (15)	0.0986 (10)
C34	0.6806(2)	().2347 (6)	0.64154 (16)	0.1087 (13)
C35	0.6646 (2)	0.1239 (5)	0.60093 (17)	0.1082 (12)
C36	0.5848(2)	0.1372(4)	0.57038 (13)	0.0852 (9)

Table 2. Selected geometric parameters (Å, $^{\circ}$) for (Ia)

	Tuble 2. Seree	ieu geomen	e paramerers (11,	, , , , , , , , , , , , , , , , , , , ,
	C1—C2	1.334 (4)	C14—N14	1.462 (4)
	CI-C11	1.456 (3)	N14-014'	1.212 (4)
Cu $K\alpha$ radiation	C2-O21	1.354 (3)	N14—014''	1.228 (4)
$\lambda = 1.5418 \text{ Å}$	C2—C3	1.499 (4)	C15-C16	1.378 (4)
Cell parameters from 25	C3-031	1.220 (4)	O21—C22	1.434 (3)
Cen parameters nom 25	C3-C31	1.481 (4)	C31—C32	1.374 (4)
renections	C11-C12	1.388 (4)	C31—C36	1.382 (4)
$\theta = 30-35^{\circ}$	C11—C16	1.391 (4)	C32—C33	1.368 (4)
$\mu = 0.795 \text{ mm}^{-1}$	C12-C13	1.380(4)	C33—C34	1.358 (5)
T = 201 K	C13-C14	1.381 (4)	C34—C35	1.372 (5)
r = 291 K	C14—C15	1.366 (4)	C35—C36	1.370 (5)
	C2-C1-C11	130.1 (2)	014'-N14-014''	123.1 (3)
$0.60 \times 0.20 \times 0.10$ mm	C1-C2-O21	121.5 (2)	O14'-N14-C14	118.8 (3)
Transparent yellow	C1C2C3	119.1 (2)	014''-N14-C14	118.1 (3)
	O21—C2—C3	118.4 (2)	C14—C15—C16	118.7 (3)
	O31-C3-C31	121.1 (2)	C15-C16-C11	121.6 (3)
	O31-C3-C2	119.0 (3)	C2-021-C22	117.4 (2)
	C31-C3-C2	119.9 (3)	C32-C31-C36	119.0 (3)
$R_{\rm int} = 0.0631$	C12-C11-C16	117.8 (2)	C32-C31-C3	122.2 (2)
$\theta_{\rm max} = 60.06^{\circ}$	C12C11C1	124.7 (2)	C36-C31-C3	118.7 (3)

C16-C11-C1 C13-C12C11 C12C13C14 C15C14C13 C15C14N14	117.5 (2) 121.4 (3) 118.5 (3) 121.9 (2)	C31-C32-C33 C34-C33-C32 C33-C34-C35 C36-C35-C34 C35-C36-C31	120.9 (3) 119.6 (3) 120.4 (3) 120.2 (3) 119.8 (3)	C16 O21 C22 O31 C31	0.5172 (2) 0.42545 (16) 0.3121 (3) 0.36778 (16) 0.1914 (2)	-0.0441 0.39107 0.4679 0.58080 0.3727	(2) 7 (15) (2)) (13) 3 (18)	0.29363 (18) 0.15617 (13) 0.0800 (2) 0.38610 (14) 0.46759 (17)	0.0432 (5) 0.0508 (4) 0.0570 (5) 0.0528 (4) 0.0378 (4)
C13-C14-N14	118.9 (3)	0.5 0.0 0.	11710(5)	C32 C33	0.0757(2) -0.0435(3)	0.2354 0.1824	(2) (2)	0.4205 (2) 0.5040 (2)	0.0461 (5) 0.0573 (6)
(I)				C34	-0.0447 (3)	0.2639	(2)	0.6345 (2)	0.0597 (6)
Compound (ID)				C35	0.0698 (3)	0.4003	(3)	0.6816 (2)	0.0574 (6)
Crystal data				0.50	0.1804 (2)	0.4505	(2)	0.57722 (17)	0.0400 (3)
$C_{16}H_{13}NO_4$ $M_r = 283.27$		Cu $K\alpha$ radiation $\lambda = 1.5418$ Å		Table	4. Selected	geometri	c para	meters (Å, °) for (Ib)
Triclinic		Cell parameters fi	rom 25	C1—C2		1.331 (3)	N13-	-013'	1.223 (2)
$P\overline{1}$		reflections		C1C11		1.463 (2)	N13-	-013'' C15	1.222 (2)
a = 8.384 (1) Å		$\theta = 30-35^{\circ}$		C2C3		1.499 (2)	C14-	C16	1.381 (3)
b = 8.783 (1) Å		$\mu = 0.840 \text{ mm}^{-1}$		C3031		1.215 (2)	021-	C22	1.432 (2)
c = 9.492 (1) Å		T = 293 K		C3—C31		1.491 (2)	C31—	C36	1.386 (2)
$\alpha = 95.01 (1)^{\circ}$		Block		CII-CI	5	1.394 (2)	C31-	-C32	1.388 (2)
$\beta = 97.17 (1)^{\circ}$		$0.50 \times 0.30 \times 0.10$	30 mm	C12-C1	3	1 374 (2)	C32-	C34	1.377 (3)
$\gamma = 101.50 (1)^{\circ}$		Transparent vello	w	C13-C14	4	1.375 (3)	C34—	C35	1.378 (3)
V = 675.03(13) Å	3	J		C13—N1	3	1.476 (2)	C35—	-C36	1.383 (3)
7 = 0,5.05 (15) 1 7 = 2	•			C2C1	-C11	129.6(1)	013'-	–N13–C13	117.9 (2)
$D_{\rm c} = 1.394$ Mg m	-3			C1C2	-021	121.1 (2)	013''	N13C13	118.1 (2)
$D_x = 1.594$ Mg m				C1C2	-C3	121.0(1)	C13-	-C14C15	117.6 (2)
D_m not measured				021		110.7(1) 121.3(2)	C14-	CIS-CI6	120.1(2) 122 1(2)
Data collection				031C3		118.9(1)	C2(021—C22	116.2 (1)
Errof Norius CA	D 4 four	P = 0.0502		C31-C3	C2	119.8(1)	C36—	-C31C32	119.9 (2)
Enral-Nonius CA	D-4 10ul-	$\Lambda_{\rm int} = 0.0392$		C16—C1	1C12	117.7 (2)	C36—	-C31—C3	118.1 (1)
circle diffractor	neter	$\theta_{max} = 39.90$		C16-C1	1—C1	119.8(1)	C32—	-C31C3	121.9 (2)
ω scans	•:	$h = -9 \rightarrow 9$		C12C1	2	122.3(2)	C34-	$-C_{32}$	119.7(2) 120.1(2)
Absorption correc	tion:	$k = -9 \rightarrow 7$		C12C1	3C14	123.7 (2)	C35—	-C34C33	120.4 (2)
none	a:	$l = -10 \rightarrow 10$		C12—C1	3—N13	117.8 (2)	C34—	-C35C36	119.9 (2)
3/43 measured re	nections	3 standard reflect	ions	C14-C1	3—N13	118.5 (2)	C35—	-C36C31	120.0(2)
2000 independent	reflections	frequency: 92 f	$\min_{x \in \mathcal{X}} \frac{1}{200}$	013 ⁻ N	13-013	124.0(2)			
1929 observed ret	lections	intensity decay	: 1.20%	The dat	ta were corre	cted for L	lorentz	and polariza	tion effects.
$[I > 2\sigma(I)]$				The str	uctures were	solved by	direct n	nethods using	SHELXS86
Refinement				(Sheldr	ick, 1990) a v full-matrix	nd refine	d with ares me	SHELXL96 thods All H	(Sheldrick, atoms were
Refinement on F^2		$\Delta q_{m} = 0.234 e$	$\mathbf{\mathring{A}}^{-3}$	located	by a differen	ce Fourier	synthe	sis and refine	d with fixed
R(F) = 0.0429		$\Delta \rho_{\text{max}} = -0.196$	$e^{A^{-3}}$	individ	al displacem	ent param	eters []	$V(H) = 1.5U_{*}$	(Cmathyl) OT
$wR(F^2) = 0.0429$		Extinction correct	tion [.]		12U(C)	using a r	iding n	odel with s	$n^2 C_{m}H =$
S = 1.129		SHELXI 96	uom.	0010 = 003	$C_{eq}(C)$	-H = 00	96 Å N	Aolecular or	p C II =
2000 reflections		Extinction coeffic	cient:	0.95 al	d using SHF	I XTI - 0	(Shel	frick 1991)	Pines were
191 parameters 0.091 (4)		For both compounds data collection: SDP (Enref, Nonius							
H atoms: see belo		Atomic scattering	factors	1085)	ror both compounds, data concertion. SDF (Enral-Nonius,				
$w = 1/[\sigma^2(F^2) + 4$	$(0.0369P)^2$	from Internatio	nal Tahles	1705),	cen renneme	in. <i>5D1</i> , 0		inclion. SDI.	
$= 17[0 (1_0) + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$	(0.05071)	for Crystalloar	anhy (1907				-		
where $P = (F_{i}^{2})$	$(2^{2} + 2E_{*}^{2})/3$	Vol C Tables	4268 and	Lists of	structure fact	ors, anisot	ropic di	splacement pa	rameters, H-
	· · · · · · · · · · · · · · · · · · ·	, or, c, raoles		atom as	ordinator and	complete o	anmot-	, have been de	enocited with

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (Ib)

6.1.1.4)

 $(\Delta/\sigma)_{\rm max} < 0.001$

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
C1	0.4236 (2)	0.20512 (19)	0.31967 (17)	0.0390 (4)
C2	0.3812 (2)	0.33431 (19)	0.27837 (17)	0.0382 (4)
C3	0.3154 (2)	0.44049 (18)	0.37789 (17)	0.0390 (4)
C11	0.5213 (2)	0.10563 (18)	0.25410(16)	0.0366 (4)
C12	0.6259 (2)	0.15689(19)	0.15575 (17)	0.0389 (4)
C13	0.7172 (2)	0.0576 (2)	0.10234 (17)	0.0397 (4)
N13	().82440(19)	0.1135 (2)	-0.00276 (16)	0.0502 (4)
013'	0.85805 (19)	0.01580(19)	-0.08743 (15)	0.0675 (5)
013''	0.8742 (2)	0.25451 (18)	0.00002 (18)	0.0767 (5)
C14	0.7132 (2)	-0.0904 (2)	0.14048 (19)	0.0485 (5)
C15	0.6112(2)	-0.1408 (2)	0.2387 (2)	0.0510(5)

References Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.

atom coordinates and complete geometry have been deposited with

the IUCr (Reference: KA1206). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey

- Kröhnke, F. & Zecher, W. (1962). Angew. Chem. 74, 811-817.
- Malkin, T. & Robinson, R. (1925). J. Chem. Soc. 127, 369-377.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Square, Chester CH1 2HU, England.

- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Teuber, H. J., Schütz, G. & Bader, H. J. (1977). Liebigs Ann. Chem. pp. 1321-1334.